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ABSTRACT 

Moringa oleifera, also known as shajina, is rich in bioactive phytochemicals, including 

flavonoids, alkaloids, and phenolics, which contribute to its therapeutic potential. Various parts, 

including leaves, barks, and flowers exhibit antioxidant, anti-inflammatory, and antimicrobial 

properties. The present study was designed to explore the antidiabetic potential of the flower 

extract through the in vivo and in silico study. The hypoglycemic activity of the flower extract 

was evaluated in Wistar rat using an oral glucose tolerance test (OGTT), while molecular 

docking identified key phytochemicals targeting diabetic pathway proteins. The in vivo study 

revealed significant glucose-lowering effects of flower extract fractions, particularly n-hexane 

(NHF) and chloroform. At 200 mg/kg, both n-Hexane and chloroform fractions reduced blood 

glucose by 30.22% and 33.83%, respectively, increasing to 37.01% and 49.86% at 400 mg/kg, 

nearing the standard hypoglycemic drug miglitol's 53.92% efficacy. In silico analysis showed 

strong binding affinity of kaempferol, quercetin, and ar-turmerone to pancreatic alpha-amylase 

(5E0F) with binding energies of -8.8, -9.0, and -6.9 kcal/mol, respectively. ADMET analysis 

confirmed their favorable pharmacokinetics, including good solubility, non-toxicity, and non-

carcinogenicity. The outcomes of the study assist in concluding the presence of some bioactive 

substances with promising hypoglycemic activity.  

Keywords: Bioactive Phytochemicals, diabetics, hypoglycemic activity, molecular docking, 

Moringa oleifera,  

INTRODUCTION 

Diabetes mellitus is a chronic 

metabolic disorder characterized by persistent 

hyperglycemia resulting from impaired insulin 

secretion, insulin action, or both. Type 2 

diabetes mellitus  accounts for over 90% of all 

diabetes cases and is associated with severe 

complications such as cardiovascular diseases, 

nephropathy, neuropathy, and retinopathy 

(Faselis et al., 2020). The increasing global 

prevalence of diabetes necessitates the 

continuous search for novel therapeutic agents 

with minimal side effects. Natural products 

derived from medicinal plants have long been 

explored as alternative treatments for diabetes 

due to their bioactive phytoconstituents with 

hypoglycemic potential (Ríos et al., 2015, 

Jugran et al., 2021). On the other hand, the use 

of synthetic drugs poses a significant global 

health risk and increases the likelihood of 

conditions such as cancer, diabetes, and 

neurodegenerative diseases. To address this 
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issue, it is essential to focus on developing 

medicines derived from natural herbs (Karim 

et al., 2025a). 

Moringa oleifera (Family: 

Moringaceae), commonly known as the 

drumstick tree, is a nutritionally and 

medicinally important plant widely used in 

traditional medicine for its diverse 

pharmacological activities. Although the 

leaves and seeds have been extensively 

studied for their medicinal benefits, the 

therapeutic potential of the flowers remains 

underexplored (Karim et al.,2025b). Recent 

phytochemical investigations indicated that M. 

oleifera flowers contain a rich profile of 

bioactive compounds, including flavonoids, 

alkaloids, and terpenoids, which may 

contribute to their pharmacological action like 

anti-asthmatic, anti-diabetic, hepatoprotective, 

anti-inflammatory, anti- fertility, anti-cancer, 

anti-microbial, anti-oxidant, cardiovascular, 

anti-ulcer, CNS activity, anti-allergic, wound 

healing, analgesic, and antipyretic activity 

(Paikra et al., 2017). 

This study aims to evaluate the 

hypoglycemic potential of M. oleifera flower 

extract through both in vivo and in silico 

approaches. The in vivo study investigates the 

glucose-lowering effects of different solvent 

fractions of the extract using the oral glucose 

tolerance test  in Wistar rats (Kifle et al., 

2020, Goyal and Jeyabalan, 2021). The in 

silico study involves molecular docking 

analysis to identify key phytochemicals 

responsible for modulating diabetes-related 

proteins (Ajiboye et al., 2022). Additionally, 

pharmacokinetic and ADMET (Absorption, 

Distribution, Metabolism, Excretion, and 

Toxicity) predictions were performed to assess 

the drug-likeness properties of the identified 

compounds (Bitew et al., 2021, Sucharitha et 

al., 2022). 

 

 

MATERIALS AND METHODS 

Collection and preparation of the plant 

sample 

The fresh flower of M. oleifera was 

collected from Kushtia, Bangladesh, in March 

2024, and the sample's authenticity was 

verified by Jahangirnagar University 

Herbarium, Bangladesh (JUH- 10271). After 

being washed, freshly picked flowers were 

dried for a few days at ambient temperature 

(25°C-30°C) and relative humidity (60%-

70%). Then, the dried sample was ground into 

powder and stored in a closed container. 
 

Extraction and fractionation 

The dried powder sample of flower 

was extracted in methanol using the cold 

extraction procedure. In a clean beaker, 300 

gm of the powder was soaked in about 1L of 

methanol for 15 days with occasional stirring. 

The filtrate was collected using a cotton-

plugged funnel and then completely 

evaporated using a rotary evaporator set to a 

fixed temperature and pressure, condensing 

the filtrate into a dry crude extract. Around 5.0 

gm of the crude extract was dissolved in 10 % 

aqueous methanol and the fractionation was 

carried out using n-hexane (NHF), chloroform 

(CF), ethyl acetate (EAF), and aqueous (AQF) 

depending upon the polarity applying the 

modified Kupchan partitioning protocol (Van 

Wagenen et al., 1993) to separate 

phytochemicals in different solvents based on 

their polarity index. The fractionated extracts 

were collected by evaporation in a Rotary 

Evaporator in a different quantity; n-hexane 

soluble fraction (1.7gm), Chloroform soluble 

fraction (1.4gm), Ethyl acetate soluble fraction 

(0.8gm), Aqueous fraction AQF (1.1gm). 
 

Drugs and reagents 

All reagents involved in the study were 

of analytical grade. Methanol (100%), n-

hexane, chloroform, ethyl acetate, dimethyl 

sulfoxide (DMSO), Tween‐80, and glucose 

were purchased from BDH Chemicals. Saline 
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water (from Popular Pharmaceuticals Ltd.) 

and miglitol (provided by Incepta 

Pharmaceuticals Ltd.) were also used. 

Experimental animal 

Wistar rats (standard outbred Wistar 

strain) were collected from the International 

Centre for Diarrheal Diseases and Research, 

Bangladesh (ICDDR'B), and were used to 

conduct the study. These rats were 8-10 weeks 

old and weighed 280-340 g. The weight 

variation may be due to the biological, age, 

diet or environmental factors. To provide them 

with a suitable housing duration, the 

recommended temperature of 24±2°C, relative 

humidity is 60-70% and other stipulated 

circumstances were met. The rodent food and 

water provided to the experimental rats were 

prepared by ICDDR'B. The Animal Ethics 

Committee at the Faculty of Biological 

Science, University of Dhaka conducted a 

panoramic assessment of the ethical guidelines 

and protocols of the investigation and 

generated their systematic review and 

approval (Ref. No. 270/Biol. Sci.). Then, the 

investigation was performed according to the 

ARRIVE guideline 2.0 (Percie du Sert et al., 

2020). 

 

In-vivo study 

Hypoglycemic activity. The 

hypoglycemic property of the various fractions 

of the methanolic extract of M. oleifera flower 

was assessed using a slightly modified form of 

the oral glucose tolerance test (OGTT) 

(Bogdanet et al., 2020). The OGTT is a widely 

accepted method to evaluate glucose 

homeostasis, insulin sensitivity, and possible 

antidiabetic properties of test compounds. 

Initially, six rats in each group (Negative 

control, positive control, and test groups) had 

their blood glucose levels measured using a 

glucometer by drawing blood from the tail 

vein (Arifin and Zahiruddin, 2017). In this 

study, miglitol (10 mg/kg) was used as a 

positive control, and a 1% Tween 80 saline 

solution (10 mL/kg) as a negative control, 

with all rats initially given a 10% glucose 

solution (2 g/kg) to induce hyperglycemia. 

The test group received oral doses of plant 

fractions (200 and 400 mg/kg), and blood 

glucose levels were measured at 30, 60, 120, 

and 180 minutes to evaluate the 

antihyperglycemic effect compared to the 

synthetic drug, highlighting the impact of 

miglitol in reducing elevated glucose levels. 

To evaluate the activity, the test sample's 

percent reduction in blood glucose level 

relative to the standard was calculated using 

the following equation: 

% Reduction = 
(Tn − Ts)

Tn
∗ 100 

Where, Tn represents the mean of Blood 

glucose level in the control group, while Ts 

represents the mean blood glucose level in the 

sample treatment groups after 30 minutes of 

oral administration. 

Statistical analysis. The data processing and 

graph construction from the in vivo data were 

conducted using MS Excel (version 10.0) and 

GraphPad software. To accurately represent 

the results of the in vivo evaluations, the mean 

± SEM was used to convey the average values 

and their corresponding standard errors of the 

mean. The p-values of the assays were 

obtained using the student t-test calculator 

(unpair t-test) and any data with p-values < 

0.05 was considered as statistically significant. 

In-silico molecular modeling studies 

Phytochemicals selection and preparation: 
In this study, 72 compounds from Moringa 

oleifera flowers were identified through 

literature and the IMPPAT database 

(Mohanraj et al., 2018).  Ligand 3D 

conformers were retrieved in SDF format from 

the PubChem database and processed using 

Open Babel to compile a ligand library. 

Energy minimization was performed with 

PyRx 0.8 and Open Babel 2.3.1, employing 

the MMFF94 force field (Kim et al., 2016). 
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Finally, AutoDock Tools was used to convert 

the ligands into pdbqt format for further 

analysis. 

Selection and preparation of proteins: To 

perform docking studies, the crystal structure 

of the human pancreatic Alpha-Amylase 

complexed with Mini-Montbretin A (PDB ID: 

5E0F) was retrieved from the Protein Data 

Bank. The protein, containing a single chain, 

was prepared using PyMOL (v2.3) 

(https://pymol.org/2/) and cleaned by 

removing unwanted ligands, heteroatoms, and 

water molecules (Akash et al., 2023). The 

structure was then imported into AutoDock 

Tools for conversion into PDBQT format 

following standard protocols (Chatterjee et al., 

2018). Energy minimization of the receptor 

was conducted using Swiss PDB Viewer 

before saving the refined structure as a PDB 

file for further analysis (Kaplan and Littlejohn, 

2001). 

Methods of molecular docking: To ensure 

proper binding of the drug to the target 

receptor, a clean receptor site free from 

interference by water or other molecules is 

essential. In the docking study, the grid box 

parameters were set to X=-8.4005, 

Y=21.6258, and Z=-18.9668, with an 

exhaustiveness value of 8 to optimize the 

protein-ligand binding conformation. Using 

PyRx, ligands were transformed into pdbqt 

format, and proteins developed as 

macromolecules. Molecular docking was 

performed using Auto Dock Vina (Dallakyan 

and Olson, 2014). The docked complexes 

were visualized in PyMOL, and further 

analysis of key amino acid residues and 

interaction sites was conducted using BIOVIA 

Discovery Studio Visualizer. 

Lipinski rule and drug-likeness properties 

analysis: The pharmacokinetics and Lipinski's 

Rule of Five for the selected drugs were 

analyzed using the Swiss ADME online tool 

(http://www.swissadme.ch) (Azzam, 2023). 

These parameters evaluate structural and 

chemical properties to determine a molecule's 

similarity to existing drugs. Key factors 

include hydrophobicity, drug-likeness, 

hydrogen bonding, molecular weight, size, 

bioavailability, and other relevant 

characteristics (Ji et al., 2020). 

Prediction of ADMET profile: Insufficient 

pharmacokinetic and safety profiles are major 

factors in the failure of drug development. 

Computational methods can help address these 

challenges. Among these, pkCSM offers a 

promising alternative for predicting 

pharmacokinetic properties and ADMET 

(absorption, distribution, metabolism, 

excretion, and toxicity) features. Research 

indicates that ADMET predictions are 

valuable for assessing the pharmacokinetics of 

biomolecules prior to clinical and preclinical 

trials (Avram et al., 2020, Sun et al., 2022). 

The pkCSM web tools 

(https://biosig.lab.uq.edu.au/pkcsm/) (Azzam, 

2023) and 

http://lmmd.ecust.edu.cn/admetsar2/result/?tid

=742441 were used to assess and analyze the 

ADMET feature. 

RESULTS AND DISCUSSIONS 

Hypoglycemic Activity 

The effects of various extracts on 

glucose levels were assessed over a period of 

180 minutes following oral glucose 

administration. The data are presented in 

Table 1. In the control group, glucose levels 

peaked at 30 minutes (10.63±0.28 mmol/L) 

and declined to 8.33±0.15 mmol/L by 180 

minutes. The standard drug (STD) 

significantly reduced glucose levels at all time 

points (***p < 0.001), confirming the 

experimental setup. Both NHF-400 and CF-

400 extracts showed strong antihyperglycemic 

effects, significantly lowering glucose at 60, 

120, and 180 minutes, with CF-400 being 

more effective. Lower doses (NHF-200, CF-

200) showed moderate activity, while EAF-

200 and EAF-400 exhibited no significant 
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effects. AQF-400 and AQF-200 showed slight, 

non-significant glucose reductions, indicating 

weak activity. 

The findings of the investigation confirmed 

that both the dose (200 mg/kg and 400 mg/kg 

of body weight) of n-hexane fraction (NHF) 

and chloroform fraction (CF) exhibited 

statistically significant (p<0.05) hypoglycemic 

effect up to three hours from the 

administration of glucose solution, compared 

to the control group.  The 200 mg/kg body 

weight dose of NHF and CF expressed a 

30.22% and 33.83% reduction of blood 

glucose level after 180 minutes, respectively 

and the 400 mg/kg body weight dose of NHF 

and CF exhibited 37.01% and 49.86% 

reduction of blood glucose levels which was 

very much comparable to the percent 

reduction value (53.92%) of the positive 

control drug miglitol (Figure 1).  

The in vivo findings suggest that 

Moringa oleifera flower extract has notable 

hypoglycemic effects, likely mimicking the 

mechanisms of synthetic antidiabetic drugs, 

such as enhancing insulin release, reducing 

glucose production, inhibiting glucose 

absorption, or activating PPARs 

(Subramoniam, 2016). 

In Silico Studies 

Molecular docking analysis: To 

justify the in vivo results, molecular docking 

analysis is widely performed for determining 

the ligand-protein interactions. It offers a 

detailed understanding of the binding sites of 

the proteins, binding style, and probable 

mechanism of action among the existing 

pathways. H bonding as well as hydrophobic 

bonding are the main reasons for docking 

scores because protein-ligand interaction is 

crucial in structurally oriented drug design. If 

the docking score is more than -6.00 kcal/mol, 

the drug is considered standard  (Cosconati et 

al., 2010).The identification of the ligand-

receptor complex structure is the main 

objective of molecular docking. This can be 

achieved in two interrelated steps: first, by 

sampling ligand arrangements on protein 

active sites, and second, by organizing the 

distortions utilizing a score function. 

Blind docking analysis revealed that all 

compounds exhibited strong binding affinities 

with human pancreatic alpha-amylase (PDB: 

5E0F), with binding energies ranging from -

6.9 to -9.0 kcal/mol Table 2. Notably, 

kaempferol, quercetin, and ar-turmerone 

showed the highest affinities, indicating 

potential hypoglycemic effects of M. oleifera 

phytochemicals against type 2 diabetes 

(Ponnusamy et al., 2015). 

Protein-ligand Interaction: Pymol 

application software and the BIOVIA 

Discovery Studio were utilized to produce the 

interaction diagrams for drug-protein 

configurations, hydrogen bonds, and 

molecular docking pockets. Protein and ligand 

interactions have been studied about hydrogen 

bond donor and donor-acceptor interactions, 

hydrophobic interactions (such as pi-sigma, 

alkyl, and pi-alkyl interactions), and hydrogen 

bond interactions (including conventional and 

non-conventional H bonds). Hydrophobic and 

hydrogen bond interactions are important in 

drug activity. Various involvement and 

binding activities between the medication and 

the intended target protein are shown in Figure 

2. In hydrogen bonding, the acceptor region is 

described as red-green, and the receptor region 

as violet. Furthermore, the two-dimensional 

image of active amino acid residues shows 

that A: GLN63 (2.49893), HIS305 (2.42039), 

ASP197 (2.506.9), ASP300 (2.9675), ASP300 

(2.26897), TRP59 (4.83897), TRP59 

(4.16462), TRP59 (5.90182), TRP59 

(4.33158), and TYR62 (4.94086) are 

generated for Human pancreatic alpha-

amylase (PDB ID 5E0F) with 

Lipinski rule analysis for oral 

medication: The Lipinski rule suggests that 

orally active drugs should be modest due to 
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their pharmacological or biological activity, as 

they possess the necessary molecular and 

physical properties for oral consumption by 

mammals. According to the Lipinski Rule, a 

suitable oral drug must have a topological 

polar surface area between 17.07 and 131.36 

and a molecular weight between 286.24 and 

306.24. Additionally, all drugs have greater 

bioavailability ratings (0.55) (Table 3). The GI 

absorption rate is another crucial metric that 

shows how effectively the drugs are absorbed 

in the digestive system (Table 3).  

ADMET profile prediction: The 

computational inspection techniques may be 

used in drug development to detect ADMET 

parameters, which have a substantial influence 

on therapeutic absorption, distribution, 

metabolism, solubility, and oral bioavailability 

(Daoud et al., 2021). Each of the ADMET 

features given has a different water solubility 

value. Since their actual water solubility 

values vary from -4 to -6, the ligands LM02 

and LM03 are extremely soluble in water, 

with a range of -2.925 to -4.454. It is implied 

that the remaining substances are highly 

soluble in fatty substances or lipids since they 

are only weakly soluble in water. A thorough 

summary of medication distribution, including 

volume distribution and blood-brain barrier 

permeability, is given in Table 4. Another 

factor that prevents undesirable substances 

from accessing the brain and CNS is the 

blood-brain barrier or BBB (Cosconati et al., 

2010). In our findings, the BBB permeability 

range was -1.098 to 0.512 (Table 4). 

 Since highly water-soluble oral 

medications provide superior oral 

bioavailability and maximal absorption 

capacities, water solubility is essential for 

contemporary drug research. The development 

of quick, accurate, structure-based strategies 

for determining an active drug candidate's 

solubility in water is highly desired (Wang et 

al., 2018).  Theoretical results showed that 

quercetin (LM02) and ar-turmerone (LM03) 

are highly water-soluble, with low volume of 

distribution (VD), suggesting higher plasma 

concentration and limited tissue penetration; 

most ligands exhibited low VD and BBB 

permeability ranged from -1.098 to 0.512. All 

ligands satisfied Lipinski’s rule, with suitable 

topological polar surface area (17.07–131.36 

Å²), molecular weight (286.24–306.24 g/mol), 

and bioavailability scores (0.55), indicating 

good oral drug potential. (Khan et al., 2019). 

CONCLUSION 

The present study explored the 

hypoglycemic potential of Moringa oleifera 

flower extract through in vivo and in silico 

approaches. The n-hexane and chloroform 

fractions demonstrated significant glucose-

lowering activity in OGTT assays. Molecular 

docking analysis identified kaempferol, 

quercetin, and ar-turmerone as potential 

inhibitors of pancreatic alpha-amylase, with 

favorable binding affinities and 

pharmacokinetic properties. These findings 

suggest that Moringa oleifera flowers contain 

bioactive compounds with antidiabetic 

potential. Further experimental validation, 

including studies on diabetic animal models 

and mechanistic investigations, is necessary to 

confirm their therapeutic efficacy. 
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Table 1: Average glucose level (mmol/L) after loading the glucose sample 

Group Average glucose level (mmol/L) after loading the glucose sample 

0 minutes 30 minutes 60 minutes 120 minutes 180 minutes 

CTL 5.68±0.08 10.63±0.28 10.02±0.23 9.58±0.11 8.83±0.15 

STD 5.45±0.11 10.98±0.24 7.82±0.13*** 6.20±0.16*** 3.95±0.06*** 

NHF- 200 7.55±0.20 10.15±0.24 9.45±0.16 8.03±0.16** 7.08±0.15*** 

NHF -400 6.80±0.14 9.05±0.23 7.20±0.25*** 6.32±0.26*** 5.70±0.20*** 

CF -200 5.32±0.17 10.78±0.26 9.33±0.12* 8.95±0.13** 7.13±0.18*** 

CF -400 6.02±0.16 9.73±0.38 6.17±0.25*** 5.46±0.24*** 4.88±0.24*** 

EAF -200 5.48±0.11 11.32±0.26 10.01±0.28 9.58±0.28 8.80±0.21 

EAF -400 5.70±0.07 10.69±0.29 9.87±0.23 9.30±0.14 8.80±0.14 

AQF-200 5.50±0.07 9.82±0.36 9.43±0.28 9.07±0.13 8.58±0.10 

AQF-400 6.15±0.15 10.90±0.21 9.50±0.18 9.18±0.21 8.37±0.16 

Note: Data are mentioned as mean ± SEM, n = 6. *p<0.05; **p<0.01; ***p < 0.001 versus 

negative control.  

CTL=Control group; NHF=N-Hexane Fraction; CF=Chloroform Fraction; EAF=Ethyl Acetate 

Fraction; AQF=Aqueous Fraction 
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Figure 1. Percent glucose level reduction (vertical unit) for different   fractions Moringa 

oleifera flower with time. 

Table 2: Data on binding energy and the name of the interacted ligand for human 

pancreatic alpha-amylase (PDB: 5E0F). 

Ligand Binding 

Affinity 

(kcal/mol) 

No of H 

bonds 

No of 

Hydrophobic 

bonds 

Others Total 

bonds 

Kaempferol -8.8 5 4 1 10 

Quercetin -9 4 5 1 10 

ar-Turmerone -6.9 0 7 0 7 

Standard (miglitol) -5.9 3 3 0 6 
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LM04.         

B. Human pancreatic alpha-amylase (PDB ID 5E0F) with LM02 (Quercetin) 

       

C. Human pancreatic alpha-amylase (PDB ID 5E0F) with LM03 (ar-Turmerone) 

                               

 

 

D. Human pancreatic alpha-amylase (PDB ID 5E0F) with Standard (Miglitol) 
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Figure 2.  Molecular docking experiments reveal the interactions between proteins and 

substances. 

Table 3:  Data of Lipinski rule, pharmacokinetics, and drug likeness 

CID Molecul

ar 

weight 

g/mol 

H-

bond 

accepto

r 

H-

bond 

donor 

Molar 

Refractiv

ity 

Topological 

polar surface 

area(Å²) 

Consensu

s 

Log Po/w 

Lipinski rule Bioavailabili

ty Result violatio

n 

5280863 

(Kaempferol) 

286.24 6 4 76.01 111.13 1.58 Yes 0 0.55 

5280343 

(Quercetin) 

302.24 7 5 78.03 131.36 1.23 Yes 0 0.55 

160512 (ar-

Turmerone) 

216.32 1 0 69.75 17.07 3.84 Yes 0 0.55 

441314 

Miglitol 

207.22 6 5 51.08 104.39 -1.94 Yes 0 0.55 

 

Table 4.  Computational ADMET Data Prediction 
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01 5280863 

(Kaempferol) 

-3.04 74.2

9 

1.274 -0.939 Yes No 0.477 No 0.531 No No No 

02 5280343 
(Quercetin) 

-
2.92

5 

77.2
07 

1.559 -1.098 Yes No 0.407 No 0.499 No No No 

03 160512 (ar-
Turmerone) 

-
4.45

4 

94.4
89 

0.621 0.512 Yes No 0.295 No 0.846 Yes N0 No 

04 441314 1.22

9 

41.4

62 

-0.607 -1.501 No No 0.815 No 2.239 No No No 
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